Skip to main content

3 posts tagged with "markdown"

View All Tags

Creating a compiler-based Markdown parser in TypeScript - Part 1

· 6 min read

Motivation

In my previous article, I wrote about creating a simple Markdown parser in TypeScript. That parser, based on regular expressions, is simple to understand but has limitations in supporting Markdown syntax and generating HTML output. In this article, we'll explore an alternative approach to creating a Markdown parser using a compiler-style method. This three-part series begins with an exploration of tokenization. The implementation and ideas are adapted from this blog post from Federico Ramirez - Beezwax, which is well-written and easy to understand.

The purpose of this article and series is to document how I interpret the tutorials and note the key points I have learned. Unlike the Ruby language used in the tutorial, I'm using TypeScript. This may be helpful for those more familiar with TypeScript.

Creating a regex-based Markdown parser in TypeScript

· 9 min read

Motivation

Markdown is a markup language that has gained immense popularity in recent years. Besides being used as a convenient way to create content that generates full-blown static websites (via engines such as Gatsby.js and MarkBind), I also started to see widespread usage of Markdown in knowledge management systems such as Obsidian and Dendron.

I write articles like this one using Markdown and I am also actively exploring the use of Markdown in the above-mentioned capacities this year. As a result, I decided to dive deep into how Markdown works and hence this article.

I realized that there are two extremes in software projects:

  • the most popular/battle-tested/enterprise-grade projects that define the "standard" for a particular domain
  • tutorial examples/toy projects for educational purposes

While the former is complex and production ready, the latter is simple and easy to understand. The problem is that there's a huge gap between creating something simple to something complex. Should you want to do it, there's less help and at times you are basically on your own to read the code and figure out how the complex implementation works. Nonetheless, there are values in the toy examples, which is what (and why) I will be going through in this article. A simple, starter-friendly implementation.

To understand how Markdown works, I intend to implement several Markdown parsers according to the tutorials/articles that I can find online and work from simple/naive implementations to (hopefully) a more realistic implementation that can be used in production. This is the first one in the "series" and hence the elaborated introduction.

What is Markdown

As Markdown was born without a well-defined set of rules or tests, it has evolved to have a few different flavors. The most well-known flavor of Markdown is CommonMark, which provides a standard set of rules for the language. Borrowing their Markdown reference as seen here, a common set of Markdown syntax looks like this:

*This text will be italic*
**This text will be bold**
# heading 1
## heading 2
* List
* List
* List
1. One
2. Two
3. Three
---
[link](https://www.google.com)
![image](https://xxx.png)
> and more!

The syntax available in Markdown allows you to style plain text using simple "decorators" such as * and #. It is easy to write and even reads well without the need for a rendered HTML preview.

How it works

The simplest idea for a working Markdown parser is probably using regular expressions. They help you match patterns in a string and you can thereafter replace them with the formatted version. For example, you can grab text surrounded by ** (e.g. **text**) and replace them with <b>text<b>. With this mechanism, we can establish a set of regular expressions and their string replacement strategy, and then just iteratively apply them to the input text. However, it is important to note that this approach has obvious limitations which will be discussed later.

With that, we will examine how a simple Markdown parser can be implemented.

(Note that the following sections will be brief in certain areas that are trivial. You can check the codebase for reference)

Setup

As the title suggests, we will be building our parser using TypeScript. Here are the steps to get started:

  1. Create a new project with npm init -y
  2. Install the dev dependencies with npm i -D typescript parcel jest ts-jest @types/jest
    • typescript is the TypeScript compiler
    • parcel is a bundler that we will use to bundle our code into a single HTML file
    • jest and the related packages are going to help during unit testing
  3. Initialize the TypeScript project with npx tsc --init
  4. Ensure that the tsconfig.json file generated is configured properly

With the setup done, we can start building just a few simple components.

Pattern

The Pattern class in src/Pattern.ts is an abstraction that holds the regular expression and the string replacement strategy. It also provides the method to apply the regular expression.

export class Pattern {
regex: RegExp;
replacement: string;
constructor(regex: RegExp, replacement: string) {
this.regex = regex;
this.replacement = replacement;
}

apply(raw: string): string {
return raw.replace(this.regex, this.replacement);
}
}

As an aside, the above can be simplified by using the public modifier.

export class Pattern {
constructor(public regex: RegExp, public replacement: string) {}

apply(raw: string): string {
return raw.replace(this.regex, this.replacement);
}
}

Rule

From patterns, we create a higher-level abstraction which is the Rule. It is a collection of patterns that are applied in a sequence. The reason why we have a collection of patterns is that in Markdown, there can be more than one way to achieve the same formatting. For example, you can use * or _ to achieve italic text. The Rule class in src/Rule.ts is defined as follows:

import { Pattern } from './Pattern';

export class Rule {
name: string;
patterns: Pattern[];
constructor(name: string, patterns: Pattern[]) {
this.name = name;
this.patterns = patterns;
}

apply(raw: string): string {
return this.patterns.reduce(
(result, pattern) => pattern.apply(result),
raw
);
}
}

RMark

With Pattern and Rule, we can now use them to create a RMark class that will be the Markdown parser. RMark is just a convenient name for "Regex Markdown" and it is defined in src/index.ts as follows:

import { Rule } from './Rule';
import { Pattern } from './Pattern';

const defaultRules: Rule[] = [
new Rule('header', [
new Pattern(/^#{6}\s?([^\n]+)/gm, '<h6>$1</h6>'),
new Pattern(/^#{5}\s?([^\n]+)/gm, '<h5>$1</h5>'),
new Pattern(/^#{4}\s?([^\n]+)/gm, '<h4>$1</h4>'),
new Pattern(/^#{3}\s?([^\n]+)/gm, '<h3>$1</h3>'),
new Pattern(/^#{2}\s?([^\n]+)/gm, '<h2>$1</h2>'),
new Pattern(/^#{1}\s?([^\n]+)/gm, '<h1>$1</h1>'),
]),
new Rule('bold', [
new Pattern(/\*\*\s?([^\n]+)\*\*/g, '<b>$1</b>'),
new Pattern(/\_\_\s?([^\n]+)\_\_/g, '<b>$1</b>'),
]),
new Rule('italic', [
new Pattern(/\*\s?([^\n]+)\*/g, '<i>$1</i>'),
new Pattern(/\_\s?([^\n]+)\_/g, '<i>$1</i>'),
]),
new Rule('image', [
new Pattern(/\!\[([^\]]+)\]\((\S+)\)/g, '<img src="$2" alt="$1" />'),
]),
new Rule('link', [
new Pattern(
/\[([^\n]+)\]\(([^\n]+)\)/g,
'<a href="$2" target="_blank" rel="noopener">$1</a>'
),
]),
new Rule('paragraph', [
new Pattern(/([^\n]+\n?)/g, '\n<p>$1</p>\n'),
]),
];

export class RMark {
private rules: Rule[] = defaultRules;

public addRuleBefore(rule: Rule, before: string): RMark {
const index = this.rules.findIndex((r) => r.name === before);
if (index !== -1) {
this.rules.splice(index, 0, rule);
}
return this;
}

public addRule(rule: Rule): RMark {
this.addRuleBefore(rule, 'paragraph');
return this;
}

public render(raw: string) {
let result = raw;
this.rules.forEach((rule) => {
result = rule.apply(result);
});
return result;
}
}

There are two parts in src/index.ts, one being the default rules and the other being the RMark class. The default rules are the Markdown syntax that we support. As for the RMark class, its render method simply iterates through the rules and applies them to the input text. It also has the addRuleBefore and addRule methods that allow us to add new rules to the parser.

Result

Now, the parser is ready to be called via new RMark().render('input text').

A set of unit tests have been written to showcase the result:

  test('should render bold', () => {
expect(new RMark().render('**Bold**')).toBe('\n<p><b>Bold</b></p>\n');
expect(new RMark().render('__Bold__')).toBe('\n<p><b>Bold</b></p>\n');
expect(new RMark().render('This is **Bold**')).toBe(
'\n<p>This is <b>Bold</b></p>\n'
);
});

By using parcel, a simple HTML example is created to see the rendered result in the browser (by running npm run build and npm run serve in the rmark repository):

rendered page

The source code below for the screenshot above can be found in src/page.ts (index.html is also created for this example to work).

import { RMark } from '.';

const sampleText = `# Header 1
## Header 2
### Header 3
#### Header 4
##### Header 5
###### Header 6

**Bold**
*Italic*

[Link](https://github.com/tlylt/rmark)
![Image](https://raw.githubusercontent.com/tlylt/rmark/main/static/logo.svg)

This is **Bold** and this is *Italic*.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ornare erat facilisis odio viverra gravida. Phasellus in finibus libero. Duis eget pellentesque arcu, ut lobortis mi. Praesent vitae nulla sed leo dignissim finibus eget hendrerit arcu. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vestibulum enim nibh, eu pellentesque tellus fermentum venenatis. Nam consectetur sem a magna mattis, sed luctus purus tincidunt. Nam faucibus tellus sed ligula molestie pulvinar. Mauris facilisis felis ex, eu tempor justo commodo et. Aenean lobortis dignissim diam eget tempor.

Sed pellentesque nulla sit amet tincidunt sagittis. Phasellus eget justo nulla. Cras nisi odio, lobortis nec ante eget, commodo euismod
turpis. Cras id orci dolor. Etiam auctor, nisl luctus volutpat lacinia, turpis orci euismod magna, pharetra eleifend massa metus aliquet
`;

const page = document.getElementById('page');

if (page) {
page.innerHTML = new RMark().render(sampleText);
}

Limitations

Besides offering only an incomplete set of Markdown features, there are other limitations to the simple rmark parser above.

  • The regular expression approach may not be the most efficient way to parse the text
  • The regular expression is difficult to write and understand for complex syntax
  • The current approach does not strictly obey the CommonMark spec in terms of the expected HTML output

The limitations are frustrating because while the HTML generated looks almost there/mostly identical, it is not the same as the one generated by the referenced implementation. You can compare the difference with this markdown-it playground (Click on source in the right pane to view the HTML code as well).

One reason is that in the above simple implementation, the paragraph tags are added even for those that do not need them. For example, the heading tags should not be wrapped. However, to tweak the implementation to be more compliant with the CommonMark spec, the regular expression turned out to be difficult to create. If it stops adding the extra paragraph tags, it starts breaking other specs, such as not adding paragraphs for the block of lines. Additionally, the parser is likely to fail when handling nested Markdown syntax.

Conclusion

And...this is where most tutorials on (regex-based) Markdown parsers end! We are left with a simple parser that can handle a few Markdown features. Hopefully, this time it is going to be different. I am interested to find out how the edge cases can be handled, and how the parser can be made more efficient. So, I will stop here for now but continue with a more advanced implementation in the next post of the series.

References

Create VSCode Snippets for Markdown Blog Workflows

· 5 min read

Motivation

I write my blog posts in Markdown and my personal site is powered by Gatbsy.js. Within a Markdown file, there are frontmatter and content.

  • Frontmatter is a YAML block that contains the post's metadata such as title, date and description. It will be parsed and used by the site generator to generate the post's page.
  • The content is simply Markdown-styled text.

For example, this post will look something like this in the source code:

---
title: Create VSCode Snippets for Markdown Blog Workflows
date: 2023-01-03T15:09:34Z
description: Utilize VSCode snippets to simplify the creation of new posts
tags: ["markdown", "vscode"]
---

## Motivation

I write my blog posts in Markdown and...

And the rest of the body text...

For the past year, what I had to do when creating a new post was to copy the frontmatter from an existing post and then manually update it. This was not particularly pleasant. I am ashamed to admit that I just let laziness take over and did not do anything about it.

Let's fix this with VSCode snippets.

Create a snippet

A VSCode snippet is a pre-defined text that can be inserted on a trigger. You can specify:

  • the triggering word or phrase
  • what should be inserted
    • can be a simple text
    • can have placeholders
    • can use variables

The details can be found in the VSCode documentation.

Let's go through my use case as a concrete example.

Steps

What I want to achieve:

  • insert a frontmatter block with the key-value pairs required
  • auto-populate the date field with the current date-time in ISO 8601 format (this is the format that my parser expects)
  • insert some boilerplate headings for the content

1. Create a snippet file

  1. Open VSCode
    • Open the repository of your choice, if any
    • My blog is contained in a folder called blogging, so I will open that folder
  2. Go to File > Preferences > Configure User Snippets
  3. Choose the scope of the snippet
    • In my case, I want to create a snippet just for my blog project, so I will choose New Snippets file for "blogging"...
  4. Give it a name
    • I will call it blog

With that, a file called blog.code-snippets will be created in the .vscode folder.

2. Create the snippet

The blog.code-snippets file will be prepopulated with comments:

{
// Place your blogging workspace snippets here. Each snippet is defined under a snippet name and has a scope, prefix, body and
// description. Add comma separated ids of the languages where the snippet is applicable in the scope field. If scope
// is left empty or omitted, the snippet gets applied to all languages. The prefix is what is
// used to trigger the snippet and the body will be expanded and inserted. Possible variables are:
// $1, $2 for tab stops, $0 for the final cursor position, and ${1:label}, ${2:another} for placeholders.
// Placeholders with the same ids are connected.
// Example:
// "Print to console": {
// "scope": "javascript,typescript",
// "prefix": "log",
// "body": [
// "console.log('$1');",
// "$2"
// ],
// "description": "Log output to console"
// }
}

Read the comments if you would like to understand the default example given. Let's clear the file and start from scratch.

Let's first give the snippet a name and a description:

{
"Blog template": {
"description": "Blog template for a new article"
}
}

This is the metadata of the snippet. The name is what will be displayed in the IntelliSense dropdown. The description is what will be displayed in the snippet preview.

Let's choose a trigger word, here I am choosing a simple two character bt:

{
"Blog template": {
// ...omitted for brevity
"prefix": ["bt"]
}
}

This means that when I type bt in my project files and press ctrl+space, the snippet option will show up.

Lastly, let's add in what will be inserted when the snippet is applied:

{
"Blog template": {
// ...omitted for brevity
"body": [
"---",
"title: ${1:blog title}",
"date: $CURRENT_YEAR-$CURRENT_MONTH-${CURRENT_DATE}T$CURRENT_HOUR:$CURRENT_MINUTE:${CURRENT_SECOND}Z",
"description: ${2:blog description}",
"tags: [$3]",
"---\n",
"## Motivation\n",
"$0",
"## Conclusion\n",
"## References\n"
]
}
}

Some details to note:

  • the ${1:blog title}, ${2:blog description} and $3 are placeholders. When the snippet is applied, the cursor will be placed at the first placeholder and the user can tab to move or type to replace/fill in the spot. The tab order is ascending from 1 onwards
    • $0 is the final cursor position.
  • the CURRENT_YEAR, CURRENT_MONTH variables are predefined by VSCode
  • the items in the body array are joined together with a new line

Completed snippet

For reference, this is the final content in .vscode/blog.code-snippets:

{
"Blog template": {
"description": "Blog template for a new article",
"prefix": ["bt"],
"body": [
"---",
"title: ${1:blog title}",
"date: $CURRENT_YEAR-$CURRENT_MONTH-${CURRENT_DATE}T$CURRENT_HOUR:$CURRENT_MINUTE:${CURRENT_SECOND}Z",
"description: ${2:blog description}",
"tags: [$3]",
"---\n",
"## Motivation\n",
"$0",
"## Conclusion\n",
"## References\n"
]
}
}

Conclusion

My use case is for creating blog posts, but code snippets can be used in other scenarios as well. If VSCode is your main editor, do take a moment to think about what snippets you can create to make your life easier.

References